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Abstract

Traditional alpha-based tests face substantial noise when estimated on single stocks.

Using diversified test portfolios helps to reduce this noise but incurs the costs of inducing

aggregation error and reducing cross-sectional variability. To address these shortcom-

ings, we propose amore efficient statistic, a sharper alpha, that reduces estimation noise

for single stocks. We find that, while sharper alphas estimated on portfolios are similar

to traditional OLS alphas, they provide significant noise reduction at the stock-level and

reveal cross-sectional patterns that were not visible before.
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Patterns and anomalies in the cross-section of expected returns have inspired hundreds of

pricing factors (Harvey andY. Liu 2019). Collectively referred to as the factor zoo (Cochrane

2011), each “inhabitant” proposes its own competing theory for the economic drivers of al-

pha – the part of risk premia beyond what the CAPM can explain. These competing models

relate cross-sectional patters in alpha to omitted risk (Constantinides and Duffie 1996; Mer-

ton 1973), financial frictions or constraints (Asness et al. 2019; Frazzini and Pedersen 2014;

Jianan Liu, Stambaugh, and Yuan 2016; Stambaugh, Yu, and Yuan 2015), investor prefer-

ences (Bansal and Yaron 2004), beliefs (Andrei, Cujean, and Fournier 2019), and behavioral

biases (Bali et al. 2017; Barberis and Thaler 2003; Hirshleifer 2015).

Evaluating these competing models is difficult due to the estimation noise in alphas.

Indeed, the high amount of noise in single stock alphas makes it hard to detect any cross-

sectional patterns. The traditional solution is to form characteristic-sorted portfolios, where

each portfolio diversifies away idiosyncratic noise to producemore precise estimates of alpha

(Blume 1970). However, aggregating into portfolios also limits cross-sectional variability

and induces aggregation error in the form of strongly correlated factor loadings across the

cross-section of portfolio returns (Lewellen, Nagel, and J. Shanken 2010). As a result, com-

peting economic models become hard to distinguish in portfolio-based tests, as they seem to

all perform equally well (Daniel and Titman 2012). Effectively, portfolios help average away

the estimation noise, but they also average away the very details on the cross-section of risk

premia that we wish to study (Ang, Jun Liu, and Schwarz 2020).

To address these shortcomings, this paper develops a new test statistic, sharper alpha,

that reduces estimation noise without resorting to forming portfolios. We show that sharper

alphas provide significant improvements overOLSalphas for both portfolios and single stocks.

At the stock level in particular, OLS alphas do not reveal statistically significant relations to

characteristics such as size, value, profitability, investment, and betting-against-beta. The

sharper alphas do. Our approach therefore detects statistically significant alphawithout sac-

rificing stock-level variation in characteristics.
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The main insight behind our approach is that, since alpha is the difference between ex-

pected return and the required return under some benchmark model, we can improve esti-

mates of alpha by using better estimates for the expected return. Assuming that we observe

the returns on a Sharpe ratio maximizing tangency portfolio, we can obtain a better estimate

of a stock’s expected return by projecting its return onto the return of the tangency portfolio.

This estimate is more precise than a simple sample average because any unpriced idiosyn-

cratic noise in the stock return is uncorrelated with the tangency portfolio, and is therefore

filtered out by the projection.

Using the tangency portfolio as a “better yard stick” for measuring risk premia, we pro-

pose our sharper alpha statistic and provide its asymptotic and finite sample distributions.

We show that it is a consistent estimator like OLS alpha, but is asymptotically more effi-

cient. Our approach can be applied to sharpen not only CAPM alphas, but also alphas from

multi-factor models. In addition, we develop a sharper multi-asset joint test (as in Gibbons,

Ross, and J. Shanken 1989).

Of course we do not actually observe the tangency portfolio. Since the tangency returns

need to be estimated, we need to verify that the sharper alphas are robust against potential

measurement error. To address this concern, we provide sufficient conditions under which

measurement error in the tangency returns causes only an attenuation bias that shrinks all

sharper alphas towards zero. Under these conditions, our sharper alphas provides a lower

bound on the magnitude of the true alphas. Therefore, we do not need perfect tangency re-

turns to produce meaningful sharper alphas that can identify cross-sectional patterns in the

true alphas.

To apply our new statistic, we first construct a U.S. proxy for the tangency portfolio from

1967 to 2019. We build on Andrei, Cujean, and Fournier (2019) and use a 30 year rolling

window to build the tangency portfolio from daily returns of portfolios sorted on size, value,

profitability, investment, and momentum. The estimated portfolio weights are stable over

time, generating an average daily turnover of around 1.24% (corresponding to an average

3



holding period of 80 trading days). Even though the tangency portfolio is estimated only

with ex-ante available information, it achieves a high Sharpe ratio and earns the market risk

premium at less than a third the market’s volatility. Further, we verify that it satisfies the

conditions to produce sharper alphas that are robust against measurement error.

Second, we validate our sharper alphas against traditional OLS alphas at the portfolio

level, where much of the idiosyncratic noise is already diversified away. Examining daily

returns from1967 to 2019,wefind that sharper alphas track theOLS alphas across a range of

characteristic sorted portfolios. Further, we observe improved statistical significance across

the board. Thus, at the portfolio level where we have more reliable OLS alphas, we confirm

that the sharper alphas improve efficiency without introducing any bias.

Third, we estimate our sharper alphas at the stock level and show that they can better

detect true alphas. At the stock level, less than 0.12% of OLS alphas are statistically differ-

ent from zero. In contrast, over 27.88% of sharper alphas are statistically significant (with

t-statistics greater than 3). Sharper alphas thus provide statistically significant results with-

out sacrificing cross-sectional variability by pooling returns into diversified portfolios.

Fourth, we find that sharper alphas reveal new details in these cross-sectional patterns,

details that are lost to estimationnoise in traditionalOLSalphas. For the profitability anomaly

in particular, we find that a large part of the positive profitability-alpha relation is driven by

firms with negative profitability (as measured by ROE). This new empirical insight provides

useful guidance for finance theory. It suggests that theory should examine mechanisms that

are particularly important to these firms that are still in operation despite being unprofitable.

Examples include models that study growth options (Berk, Green, and Naik 1999) and how

the value of these growth options interact with business cycles (Zhang 2005) or with vari-

ance risk premia (Ericsson, Jo, and Lotfaliei 2020).

Our work is part of a growing empirical asset pricing literature that advocates the use of

large cross-sections of test assets. Lewellen, Nagel, and J. Shanken (2010) show that portfo-

lio grouping generates aggregation error and offersmitigationmeasures. Chordia, Goyal, and
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J. A. Shanken 2019 develop errors-in-variables corrections for cross-sectional regressions of

individual stock returns. Gagliardini, Ossola, and Scaillet (2016) and Chaieb, Langlois, and

Scaillet (2020) estimate time-varying risk premia from large unbalanced panels of individual

stocks. Ang, Jun Liu, and Schwarz (2020) argues that the loss in cross-sectional variability

from using portfolios instead of individual stocks results in an overall loss in efficiency for

cross-sectional tests. Barras (2019) proposes a large-scale approach that strikes a balances

between limiting aggregation error in portfolios and reducing noise in individual stocks by

forming a large number of micro-portfolios.

Our paper complements this literature because our sharper alpha can be used to sharpen

any existing, alpha-based tests, whether they are done at the portfolio, micro-portfolio, of

stock level. Our sharper alpha improves statistical power both for portfolios and individual

stocks. Using sharper alphas as inputs could therefore contribute towards improving the

statistical efficiency of a wide range of asset pricing tests.

Our paper is also related to work on risk factor and beta decompositions. Campbell and

Shiller 1988 and Binsbergen and Koijen 2010 provide a framework to decompose market

risk into a cash flow component and a discount rate component. Campbell and Vuolteenaho

(2004) apply this decomposition to market beta and argue that stocks with high cash flow

beta generate alpha because cash flow beta earns a higher risk premium than discount rate

beta. Our paper provides an alternative decomposition of market beta into i) a tangency

factor, which earns the maximum risk premium per unit of risk, and ii) an unpriced factor,

which earns no risk premium. Using this decomposition, we construct a stock’s sharper

alpha from the difference in both components of market beta, and show that this difference

is less exposed to estimation noise than the traditional OLS alpha.

The organization of the paper is as follows. Section 1 develops the sharper alpha statis-

tic assuming that the tangency portfolio is perfectly observed. Section 2 estimates the tan-

gency portfolio and show that sharper alphas are robust against potentialmeasurement error.

Section 3 demonstrates efficiency gains by comparing sharper alphas to traditional OLS al-
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phas on both single-stocks and characteristic-sorted portfolios. Section 4 concludes. The

appendix provides proofs and additional empirical tests.
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1 Model

1.1 Setup

We consider a market with N stocks indexed by n ∈ {1, ...,N }. We denote by

r
N×1

≡ [r1, ..., rN ]
T (1)

the N × 1 vector of stock excess returns. We make the following assumptions.

Assumption 1. Excess stock returns are distributed with finite mean µ
N×1

≡ E [r ] = [µ1, ..., µN ]
T

and covariance matrix Σ
N×N

≡ var [r ].

Assumption 2. The covariance matrixΣ is invertible: there are no redundant securities.

Letwm be the vector of market portfolio weights and

rm ≡wT
mr (2)

its excess returns. We denote the market portfolio’s risk premium and variance by

µm ≡ E [rm] = wT
mµ (3)

σ2
m ≡ var [rm] = wT

mΣwm. (4)

Further, let wτ be the vector of tangency portfolio weights that maximizes Sharpe Ra-

tio while still earning the same risk premia as the market. Using the portfolio rule from

Markowitz 1952, the tangency portfolio is constructed as

wτ = argmax
w

wTµ
√
wTΣw

s.t. E [rτ ] = µm (5)

=
Σ−1µ

µTΣ−1µ
· µm (6)
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and generates excess returns

rτ ≡ wT
τ r . (7)

The tangency portfolio’s risk premium and variance are then

µτ ≡ E [rτ ] = µm (8)

σ2
τ ≡ var [rτ ] =

µ2m

µTΣ−1µ
(9)

στ,m ≡ cov [rm, rτ ] =
µ2m

µTΣ−1µ
. (10)

Effectively, the tangency portfolio simply rescales the Markowitz, maximum Sharpe ratio

portfolio to earn market risk premium at the lowest volatility possible.

We can then decompose the market portfolio into the tangency portfolio and an orthogo-

nal component that earns zero risk premia. We call this component the unpriced factor. We

define its portfolio weights as

wu ≡ wm −wτ , (11)

which earnswT
uµ = 0 by construction. The unpriced factor has returns ru ≡ wT

ur and variance

σ2
u ≡ wT

uΣwu.

Since the market index is the sum of its orthogonal components

rm = rτ + ru, (12)

the market variance is can be expressed as the sum of the component variances
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σ2
m = σ2

τ + σ2
u . (13)

The proportion of market variance that is priced, σ2
τ

σ2
m
, is equal to one when the CAPM

holds. As CAPM fails, however, the market takes on some proportion of unpriced variance
σ2
u

σ2
m
> 0.

1.2 Return Decomposition

To relate alphas to the tangency factor, we express stock returns in terms of their loadings

on the tangency and unpriced factors. We define a stock’s tangency beta as

βτ,n ≡ cov [rτ , rn ]

σ2
τ

, (14)

which measures risk loading on the market’s priced component rτ .

Unpriced beta is defined as

βu,n ≡ cov [ru, rn ]

σ2
u

(15)

which measures risk coming from the unpriced component ru.

We can define the residual that is uncorrelated with both components of the market as

εn ≡rn − βτ,nrτ − βu,nru, (16)

and rewrite stock returns as

rn =βτ,nrτ + βu,nru + εn . (17)
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The stock’s risk premium is depends only on its tangency beta

µn =βτ,n · µm. (18)

Our decomposition thus breaks stock returns into three orthogonal components: a tan-

gency component generating both covariance with the market and risk premia, an unpriced

component generating covariance risk but no risk premia, and the residual component gen-

erating neither. This decomposition always holds.

1.3 Components of Beta and Alpha

We now apply the return decomposition to betas and alphas in order to derive the sharper

alpha statistic. We start with the simple case where alphas are measured with respect to the

CAPM. We then show that the results generalize to multi-factor models.

Consider the CAPM regression

rn =αn + βnrm + un (19)

and define the CAPM beta and alpha as

βn ≡cov [rn , rm]

σ2
m

(20)

αn ≡E [rn ] − βnµm. (21)

BetaDecomposition Combining (12), (17) and (20), we decompose theCAPMbeta in terms

of covariance with each component:

βn =
cov [βτ,nrτ + βu,nru + εn , rτ + ru]

σ2
m

(22)
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Proposition 1. The CAPM beta of stock-n reflects a weighted average of the component betas

βn =

(
1 − σ2

u

σ2
m

)
βτ,n +

σ2
u

σ2
m
βu,n . (23)

Intuitively, betas tend to reflect the priced, tangency betas when σ2
u

σ2
m
is close to 0 and the

market portfolio consists mostly of priced risk. However, when the CAPM fails and themar-

ket portfolio has a higher proportion of unpriced risk, market betas start to pick up unpriced

betas instead.

This decomposition of market beta is key to constructing a new measure of alpha. By

definition, alpha is the difference between the stock’s risk premium, which according to (18)

is proportional to the stock’s tangency beta, and the stock’s required risk premium, which is

proportional to its market beta. Given (23), we can therefore express alpha as a function of

the stock’s tangency and unpriced betas.

Alpha The CAPM treats both components of beta as priced risk, while only tangency betas

earn risk premia. Using (21) and (17), we can calculate alpha from this wedge between the

priced and unpriced betas.

Proposition 2. The CAPM alpha reflects the difference between the priced and unpriced com-

ponents of beta

αn = E [βτ,nrτ + βu,nru + εn ] − βnµm = (βτ,m − βn) µm (24)

=
σ2
u

σ2
m
(βτ,n − βu,n) µm (25)

Stocks with disproportionately high unpriced betas appear to require higher expected re-

turns than actually earned, thus resulting in negative alphas. On the other hand, stocks with

disproportionately high tangency betas appear to earn higher premia than required by the

CAPM, and get positive alphas instead.
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We note that alphas are scaled by the proportion of unpriced variance σ2
u

σ2
m
. When the

CAPM holds and σ2
u

σ2
m
is equal to zero, so all alphas to shrink zero as well.

1.4 Statistical Inference

Using our beta decomposition (23), we construct our sharper alpha statistic and show that

it is asymptotically more efficient that the traditional OLS alpha. We then generalize our

sharper alpha to multi-factor models, and to joint tests with multiple assets.

1.4.1 Sharper Alpha with the CAPM

For a finite sample of size T , denote by rn,t the observed excess return on asset n for time

t = 1, ...,T and rm,t is the excess market return.

Under the CAPM, we write the return as

rn,t =αn + βn · rm,t + un,t (26)

where αn , βn , and un,t are the CAPM alpha, beta, and residuals.

To construct the sharper alpha, α̂∗
p , we estimate the tangency beta and the unpriced beta

from the joint regression

rn,t =βτ,n · rτ,t + βu,n · ru,t + εn,t (27)

and apply the beta decomposition from (23) to estimate alpha as

α̂∗
n =

σ̂2
u

σ̂2
m
r̄m

(
β̂τ,p − β̂u,p

)
. (28)

Now that we have our sharper alpha estimator, we derive its asymptotics to show that it

is consistent and efficient.
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Proposition 3. AsT → ∞, the asymptotic variance of the sharper alpha α̂∗
p is given by

var [α̂∗
n ] =

(
σ2
u

σ2
m
µm

) 2
wTV ∗w (29)

wherew = [1,−1]T andV ∗ is the asymptotic covariance matrix of the tangency and unpriced

betas. Using some consistent estimator V̂ ∗, we compute the t-statistic as

t̂ ∗n =
α̂∗
n

σ̂2
u

σ̂2
m
r̄m

√
wTV̂ ∗w

=
β̂τ,n − β̂u,n√
wTV̂ ∗w

(30)

which is asymptotically normal

t̂n
d−→N

(
αn√

var [α̂∗
n ]
, 1

)
. (31)

Intuitively, the t-statistic on sharper alpha is simply a test on the difference between the

tangency beta and the unpriced beta. Since true alphas are proportional to this difference in

betas, our sharper alpha is indeed a consistent estimator of the true alpha. Having shown

consistency, we now check whether the sharper alphas are in fact more efficient than the

OLS alphas.

Proposition4. With seriallyuncorrelatedandhomoscedastic error terms εn,t wherecov
[
εn,t , εn,t−j

]
=

0 [ j , 0 andvar [εn,t ] = σ2
ε [ t , the sharper alpha α̂∗

p is more efficient than the OLS estimate

α̂p . Their asymptotic variance ratio is

var [α̂n ]

var [α̂∗
n ]

=

( (
α2
n

σ2
ε

σ2
m

µ2m
+ 1

)
·
σ2
τ

σ2
u
+ 1

)
·
(
σ2
τ

µ2m
+ 1

)
> 1 (32)

This is the key result of our paper: we show that sharper alphas are in fact sharper than

OLS alphas. By first projecting returns on the tangency and unpriced factors, we obtain

a more efficient estimator because the tangency and unpriced betas are less affected by id-
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iosyncratic noise in the stock returns. These asymptotic efficiency gains are higher when the

market has less priced variance σ2
τ relative to unpriced variance σ2

u, and when themagnitude

of alpha α2
n is large relative to the residual noise σ2

ε . These results suggest that the sharper

alpha α̂∗
n provides more statistical power in assessing asset pricing models precisely where

it is most needed.

1.4.2 Sharper Alpha with multi-factor models

We now apply our results to a multi-factor model

rn,t = αn + βn · rm,t +
K∑

k=1

βk ,n · fk ,t + un,t (33)

where fk ,t is the excess return on some traded factor or factor mimicking portfolio.

We start by reducing (33) to a simple regression between the parts of asset andmarket re-

turns not spanned by the additional factors. Define as r̃n,t and r̃m,t the residuals from regress-

ing rn,t and rm,t on the additional factors f1,t , ..., fK ,t . By the Frisch-Waugh-Lovell Theorem

(Frisch and Waugh 1933; Lovell 1963), estimating the simple regression

r̃n,t =αn + βn · r̃m,t + un,t (34)

yields coefficients and residuals that are numerically identical to estimating regression (33).

By the same logic, we can simplify the joint regression

rn,t =βτ,n · rτ,t + βu,n · ru,t +
K∑

k=1

βk ,n · fk ,t + εn,t (35)

to

r̃n,t =βτ,n · r̃τ,t + βu,n · r̃u,t + εn,t (36)
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where r̃τ,t and r̃u,t are the residuals from regressing the tangency and unpriced factors on the

additional factors f1,t , ..., fK ,t .

Using themodifiedCAPMregressions (34)with (36),we construct themulti-factor sharper

alpha

α̂∗
n =

σ̂2
u

σ̂2
m
r̄m

(
β̂τ,n − β̂u,n

)
(37)

where σ̂2
u and σ̂2

m are the sample variances of r̃u,t and r̃m,t , and r̄m is the sample mean of r̃m,t .

Both our consistency and efficiency results from theCAPMcase apply to thismulti-factor

version of sharper alpha.

Proposition 5. With β̂τ,n and β̂u,n estimated from the joint regression (35), the sharper alpha

has a t-statistic of

t̂p =
β̂τ,n − β̂u,n√
wTV̂ ∗w

(38)

wherew = [1,−1]T and V̂ ∗ is some consistent estimator for the covariance matrix of the betas.

Intuitively, we can estimate the multi-factor alpha by applying CAPM results to the part

of returns not spanned by the K additional factors. The efficiency gains from sharper alphas

can therefore be applied to any linear factor model.

1.4.3 Joint Tests of No Mispricing

In addition to sharpening alphas on individual stocks, we can use sharper alphas as inputs to

improve existing alpha-based tests. We take the multi-asset GRS test and derive a “sharp-

ened” GRS test based on our sharper alphas.

Consider a panel of N assets, with the N-vectors of tangency betas β̂τ =
[
β̂τ,1, ..., β̂τ,N

] T

and unpriced betas β̂u =
[
β̂u,1, ..., β̂u,N

] T

.
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Proposition 6. The joint test statistic with K factors and N test assets is

Js =
[
β̂τ − β̂u

] T [
var

[
β̂τ − β̂u

] ] −1 [
β̂τ − β̂u

]
. (39)

Assuming the factors are exogenous and that the error term have no serial correlation,

Js = T ·
(
1 +

r̄ 2m
σ̂2
m

) −1
·
(
1 +

r̄ 2τ
σ̂2
τ

)
·
σ̂2
τ σ̂

2
u

σ̂2
m

·
[
β̂τ− β̂u

] T

var [û ]−1
[
β̂τ− β̂u

]
(40)

is asymptotically distributed χ2
N under the null hypothesis of no mispricing. Further assuming

that the errors are joint normal, the finite sample analogue is

Fs =
T − N − K

N

Js
T − K − 1

d∼ FN ,T −N−K . (41)

With this sharper GRS test, we can test for alphas against one or many factors, on either

one or many assets jointly.

Overall, our approach offers efficiency gains over traditional OLS alphas and can be just

as easily applied to a wide range of models using any existing alpha-based test.
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2 The tangency portfolio and measurement error

In this section, we implement our decomposition of market returns using rolling estimates

of the tangency factor. We then investigate how measurement error in the tangency factor

affects the sharper alphas. We focus our empirical analysis on daily U.S. stock returns from

CRSP, with accounting variables from COMPUSTAT, between 1967 and 2019.

2.1 Estimating the tangency portfolio

To estimate the tangency portfolio weights, we first construct the tangency portfolio us-

ing characteristic sorted portfolios, similar to Andrei, Cujean, and Fournier 2019. We use

25 value-size sorted portfolio as in Fama and French 1992, 18 profitability and investment

sorted portfolios as in Hou, Xue, and Zhang 2017, and 10 portfolios sorted on momentum.

For each day t from 1967 to 2019, we use a 30-year rolling window of daily data to compute

the sample mean µ̂t and covariance matrix Σ̂t on the excess returns of these characteristic-

sorted portfolios. We compute the average market excess return µ̂m,t over the same sample

period, and estimate the tangency portfolio weights as

ŵτ,t =Σ̂
−1
t µ̂t ·

µ̂m,t

µ̂T
t Σ̂t µ̂t

. (42)

Given the market portfolio weightswm,t , we back out the unpriced residual as

ŵu,t =wm,t − ŵτ,t . (43)

Finally, using the estimated tangency and unpriced portfolio weights, we decompose the
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time t + 1market return as

rm,t+1 =ŵτ,t rt+1 + ŵu,t rt+1 (44)

=r̂τ,t+1 + r̂u,t+1. (45)

To gauge the out of sample validity of our decomposition of market returns, we compare

the performance of our ex-ante estimated portfolios to what what an ex-post optimal portfo-

lio can achieve with perfect hindsight. Figure 1 plots a snapshot of the annualized risk pre-

mia and volatilities for a sample of characteristic sorted portfolios, along with the in-sample

mean-variance frontier. The green and red dots show the ex-ante, estimated tangency and

unpriced factors. The green and red targets show the ex-post realized tangency factor and

the corresponding unpriced factor. Perhaps surprisingly, even though the tangency portfolio

weights are restricted to using ex-ante available information, the tangency portfolio did not

miss the target by much.

If we have no measurement error, we should in theory expect to see tangency returns

earning the same risk premia as the market at a lower volatility. We should also expect the

residual, unpriced factor to earn zero risk premium and to be uncorrelated to the tangency

factor. We find that this is exactly how our estimated factors behave empirically.

Figure 2 plots the cumulative log returns of the tangency and unpriced portfolios. The

tangency factor generates themarket risk premiumat less than a third of themarket’s volatil-

ity, while the unpriced factor earns zero risk premium. We test this more formally in Table

1, where we show that the tangency factor earns a significantly higher Sharpe ratio than the

market and that the unpriced factor does not earn a significant premium.

Moreover, in Table 2, we compare the market to its tangency and unpriced components.

We see that the estimated tangency factor only accounts for less than 7% of the market vari-

ance. A surprisingly large portion of market variance therefore seems to be unpriced.

Finally, in Table (3), we estimate the correlationmatrix between themarket portfolio and

its components. We find that the estimated unpriced factor is uncorrelatedwith the tangency
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factor, which is consistent with having low measurement error

Given the long, 30 year rollingwindow used, the tangency portfolio weightsmove slowly

over time. The estimated tangency portfolio has a average turnover of 1.24%, which corre-

sponds to an average holding period of 80 trading days or approximately 4 months. The ex-

ante tangency portfolio’s ability to keep earning a high Sharpe ratio out of sample shows that

the two components of the market portfolio are remarkably stable over time. For whatever

shortcoming the CAPMmay have, it consistently fails in a stable and persistent way.

2.2 Sharper alpha under measurement error

Now that we have an empirical candidate for the tangency portfolio, it is important to check

whether sharper alphas are robust against measurement error in the tangency returns.

Denote by ξ the measurement error in the tangency return. The two estimated compo-

nents of the market are

r̂τ =rτ + ξ (46)

r̂u =rm − r̂τ = ru − ξ. (47)

The presence of this measurement error can generate an errors-in-variables bias in the

estimated betas. To pin down this bias in closed-form, it helps to restrict the measurement

error to be consistent with our empirical observations. Specifically, we make the two fol-

lowing restrictions, both of which are empirically supported by our estimated factor returns.

First, we require that the estimated unpriced factor earns zero risk premium

E [r̂u] =0 (48)

which is consistentwith the tangency portfolio earning the same risk premiumas themarket,

aswe see inTable 1. Second,we assume that the estimated factors are uncorrelatedwith each
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other

cov [r̂τ , r̂u] =0 (49)

which is consistent with Table (3). Given these assumptions, we now provide a close-formed

expression for the bias from measurement error in the tangency returns.

Proposition 7. If E [r̂τ ] = E [rτ ] and cov [r̂τ , r̂u] = 0, then the sharper alpha α̂∗ converges

towards

α̂∗
n −−−−→

T→∞
(1 − π1) (1 − π2) · αn + π1 · βξ,n · µm (50)

where

π1 =
E

[
ξ2

]
E

[
r̂ 2τ

] =
σ2
ξ

µ2m + σ2
τ + σ2

ξ

∈ [0, 1] (51)

is the amount of noise in the estimated tangency factor,

π2 =
E

[
ξ2

]
E

[
r 2u

] =
σ2
ξ

σ2
u
∈ [0, 1]

is the amount of noise relative to the unpriced factor, and βξ,n =
cov[ξ,εn ]

σ2
ξ

is each stock’s direct

loading on the measurement error.

Proposition (7) breaks down the errors-in-variables bias into two components. The first

component is an attenuation bias wheremoremeasurement error (σ2
ξ ) increases the noise ra-

tios (π1,π2) and shrinks sharper alpha towards zero. Because the attenuation bias affects all

sharper alphas proportionally, the attenuated estimates provide lower bounds on the cross-

sectional differences in true alphas. Figure (A.1) in the appendix illustrates how this atten-

uation varies with the amount of measurement error σξ.

The second component is an omitted variable bias that could pose a more significant
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problem. Stock residuals that correlate with the measurement error incorrectly show up in

sharper alphas. The more noise there is, the more sharper alphas reflect the stock’s loading

on the measurement error (βξ,n).

Fortunately, there is an easy way to verify that the sharper alphas are not driven by this

omitted variable bias. The key idea is to validate sharper alphas by comparing them to OLS

alphas, which are not affected by this bias. Even though OLS alphas are unreliable at the

stock level, we can still obtain decently stable estimates at the portfolio level because some

of the idiosyncratic noise is already diversified away. We can therefore use portfolio OLS

alphas as a benchmark to validate our sharper alphas. If the sharper alphas can match the

cross-sectional patterns generated by the OLS alphas on characteristic sorted portfolios, we

can mitigate concerns that this omitted variable bias is driving our results.

In next section, we find that we can indeed rule out the omitted variable bias, and that

the estimated tangency can therefore produce meaningful estimates of sharper alphas.
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3 Empirical Results

In this section, we first use the classic characteristic-sorted portfolios to validate our sharper

alpha α̂∗ and rule out potential problemswithmeasurement errors in the tangency factor. We

then apply our new measure to single stocks and show that they provide statistical power

where the alphas do not.

3.1 Sharper alpha on sorted portfolios

We compare sharper alphas and OLS alphas on the 10 value sorted Fama-French portfolios.

We plot the alphas with respect to the CAPM, Fama-French 3 factor (FF3) (in Figure (8)),

q-factor, and Fama-French 5 factor (FF5) models (in Figure (9)). The error bars mark the

95% confidence intervals.

Wemake a number of reassuring observations. The point estimates of sharper alphas fol-

low the same cross-sectional patterns as the OLS alphas, which helps to rule out the poten-

tial issuewheremeasurement error is driving the cross-sectional variation in sharper alphas.

Further, the sharper alphas track the levels of OLS alphas. We see in Figure (8) , for example,

that the value-sorted portfolios earn between -2.3% to 2.5% with respect to the CAPM, when

the sharper alphas were estimated to be between -2.4% and 2.5%. The similarities are signs

that even if there is some attenuation bias, it is fairly limited.

The sharper alpha provide approximately a ten fold reduction in the standard errors, com-

pared to traditional CAPM alphas. This effect becomes even more significant as we move to

smaller portfolios, where less of the idiosyncratic noise is diversified away. In Figure (12) for

example, we see that this variance reduction is especially large when we consider the much

smaller 10x10 value and size portfolios.

In the appendix, we report traditional and Sharper alphaswith respect to portfolios sorted

on beta, earnings-to-price, investment-to-asset, momentum and return on equity. Using

Sharper alphas provides similar efficiency gains compared to the value and size anomalies.

22



3.2 Sharper alpha on single stocks

We now apply sharper alphas to individual stocks to show that they can detect significant

alpha without sacrificing cross-sectional variability. We estimate alphas on 5 years of daily

returns from 2014-12-31 to 2019-12-31. We use a 5 year window (similar to Fama andMac-

Beth 1973) as a reasonable compromise between having more relevant ex-ante characteris-

tics and having a longer sample of ex-poste realized returns.

In Figure (3), we provide kernel density plots for the cross-section of estimated OLS and

sharper alphas. While most OLS alphas are not statistically significant, many of the sharper

alphas are. Using a t-statistic of 3 as the critical value, 27.88% of sharper alphas are statisti-

cally significant while only 0.12% of the OLS alphas are. We plot the percentage of statisti-

cally significant alphas at different critical values in Figure (4) of the appendix.

We plot these alphas against stock characteristics to see if sharper alphas can in fact

detect the portfolio patterns at the stock level. We focus on the betting-against-beta, in-

vestment, and profitability anomalies, which generated significant alphas over this sam-

ple period. With the betting-against-beta (Figure (6)) and investment (Figure (7)) anoma-

lies, we see statistically significant patterns on the sharper alphas but not for OLS alphas.

The cross-sectional relations we observe are consistent with the portfolio-level results on

quintile-sorted portfolios (show in red). Sharper alphas therefore provide statistically sig-

nificant alphas variation without sacrificing stock-level variability in characteristics.

For the profitability anomaly (Figure (5)), the sharper alphas on individual stocks reveal

additional details that are too noisy to see in OLS alphas. The stock level relation between

sharper alphas and profitability mirrors the portfolio level results, on average, but has two

distinct components. The overall positive alpha-profitability relation is an average between

a strong positive relation amongst negative profitability stocks and a much milder relation

amongst positive profitability stocks.

This insight from the profitability anomaly provides new guidance for theory. An unprof-

itable firmonly has value because it could become profitable in the future. In otherwords, the

23



firm’s valuation is largely driven by its growth options. Since a large part of the profitability

alpha seems to be driven by unprofitable firms, we should investigate how these real-options

affect a firm’s decisions and expected returns (as in Ericsson, Jo, and Lotfaliei 2020).
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4 Conclusion

This paper develops a new approach to measuring abnormal returns. This approach uses the

tangency portfolio as a “better yard stick” for measuring alphas. We show that the resulting

estimates are robust against measurement error and provide statistical power even when the

OLS alphas fail.

Sharper alphas provide several benefits. First they help reduce estimation noise and pro-

vide statistically significant alphas without forming portfolios and incurring aggregations

errors. Second, by applying sharper alphas to individual stocks, we find cross-sectional pat-

terns that are not visible at the portfolio-level or from the noisier OLS alphas. Third, sharper

alphas can lend their efficiency gains to existing alpha-based tests. We illustrate this feature

by providing the sharper alpha equivalent of the GRS test.

We hope that our approach will provide an improved tool-kit for empirical tests in as-

set pricing, and that future research will use sharper alphas to sharpen existing, alpha-based

tests. In addition, sincewe relate the true alphas to a decomposition of betas, another promis-

ing application is to develop tests that go beyond alpha and derive testable implications on

the joint cross-sectional distribution of alphas and betas. We leave these applications for

future research.
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Figure 1: Tangency and Unpriced Portfolios: ex-ante estimates vs ex-post realizations. This
figure plots the risk premia and volatilities estimated with 30 years of daily returns on 2019-
12-31. The 25 Fama-French portfolios, 10 momentum portfolios, and 18 q-factor portfolios
are shown as black dots. Coloured dots show the market portfolio and ex-ante estimates of
its tangency and unpriced components. The in-sample, ex-poste realized realized tangency
and unpriced portfolios are shown as cross-hairs.
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Figure 2: Decomposition of Market Returns. This figure plots the cumulative log returns to
four portfolios: 1) the tangency portfolio, 2) the unpriced portfolio, 3) the value-weighted
market index, and 4) the risk-free asset. The tangency portfolio earns the market risk pre-
mium at less than a third of the market’s volatility. The unpriced portfolio generates the
remaining volatility in market returns, while earning zero risk-premium.
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Figure 3: Kernel density of the cross-section of estimated alphas. This figure plots cross-
sectional distribution of alphas estimated on the daily U.S. stock returns between 2014-12-
31 and 2019-12-31.
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Figure 4: Proportion of significant alphas. We plot the proportion of alphas that are sig-
nificant at different critical values. Alphas are estimated on daily U.S. stock returns from
2014-12-31 to 2019-12-31.
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Figure 5: The profitibility anomaly: ols alpha vs sharper alpha. This figure plots the sharper
and OLS alphas using daily returns from 2014-12-31 to 2019-12-31, against their profitabil-
ity (asmeasured by their averageROE from2004 to 2014). The quintile-sorted portfolios are
shown in red. The average cross-sectional relation and the portfolio-level relation are simi-
lar whether we look at sharper alphas or OLS alphas. At the stock level, however, sharper
alphas reveal a distinct, nonlinear relation with negative profitability stocks that is too noisy
to see with traditional OLS alphas.
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Figure 6: The betting-against-beta anomaly: ols alpha vs sharper alpha. This figure plots the
sharper and OLS alphas using daily returns from 2014-12-31 to 2019-12-31, against their
betas. The quintile-sorted portfolios are shown in red. The average cross-sectional relation
and the portfolio-level relation are similar whether we look at sharper alphas or OLS alphas.
At the stock level, sharper alphas provide significant noise reduction.
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Figure 7: The investment anomaly: ols alpha vs sharper alpha. This figure plots the
sharper and OLS alphas using daily returns from 2014-12-31 to 2019-12-31, against their
investment-to-asset ratio (averaged over the 10 prior years from2004 to 2014). The quintile-
sorted portfolios are shown in red. The average cross-sectional relation and the portfolio-
level relation are similar whether we look at sharper alphas or OLS alphas. At the stock
level, sharper alphas provide significant noise reduction.
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rm rτ ru
(1) (2) (3)

Sharpe ratio 0.400∗∗∗ 1.911∗∗∗ 0.145
(0.138) (0.138) (0.138)

risk premia 0.064∗∗∗ 0.041∗∗∗ 0.023
(0.022) (0.003) (0.022)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1: This table presents the Sharpe ratios of the tangency, unpriced, and market portfo-
lios, estimated with daily returns from 1967 to 2019.

rm
(1) (2) (3)

rτ 1.000∗∗∗ 1.033∗∗∗

(0.000) (0.033)

ru 1.000∗∗∗ 1.002∗∗∗

(0.000) (0.00002)

Constant -0.000 0.0001 0.0002∗∗∗

(0.000) (0.0001) (0.00002)

R^2 1.00 0.066 0.938
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: This table presents the coefficients and R 2 from regressing daily market excess re-
turns from 1967 to July 2019 on its tangency and unpriced components.

rm rτ ru
rm 100.00% 15.58% 99.10%
rτ 15.58% 100.00% 2.20%

ru = rm − rτ 99.10% 2.20% 100.00%

Table 3: This table presents the correlations between the market excess returns and its com-
ponents, estimated on daily returns from 1967 to 2019.
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Figure 8: Cross-Sectional Alpha. This figure shows the CAPM and FF3 alphas for the 10
value sorted portfolios, estimated from daily returns between 1967 to 2019. The error bars
indicate the 95% confidence intervals.
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Figure 9: Cross-Sectional Alpha. This figure shows the q-Factor and FF5 alphas for the 10
value sorted portfolios, estimated from daily returns between 1967 to 2019. The error bars
indicate the 95% confidence intervals.
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Figure 10: Cross-Sectional Alpha. This figure shows the CAPM and FF3 alphas for the 10
size sorted portfolios, estimated from daily returns between 1967 to 2019. The error bars
indicate the 95% confidence intervals.
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Figure 11: Cross-Sectional Alpha. This figure shows the q-Factor and FF5 alphas for the 10
size sorted portfolios, estimated from daily returns between 1967 to 2019. The error bars
indicate the 95% confidence intervals.
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Figure 12: Cross-Sectional Alpha. This figure shows the CAPM and FF3 factor alphas for
the 10x10 value and size sorted portfolios, estimated from daily returns between 1967 to
2019. The error bars indicate the 95% confidence intervals.

41



Appendix

A Distribution of estimators

A.1 Alpha vs Sharper Alpha

A.1.1 Alpha

TakeY the vector of T observations of excess returns and X = [ι |rm] the T × 2 matrix con-

taining the constant vector and the vector of market excess returns, we can write the returns

as

Y = Xγ + u (52)

γ =


αn

βn

 (53)

where γ has the CAPM coefficients and u
T ×1

is theT vector of CAPM residuals.

The sample estimates for the coefficient is

γ̂ =(X TX )−1 X TY

=γ + (X TX )−1 X Tu

and has a variance of

var [γ̂] = (X TX )−1 X TE [uuT]X (X TX )−1
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. Assuming the errors are uncorrelated and homoscedastic over time, we have

var [γ̂] = (X TX )−1 · σ2
u

σ2
u = σ2

ε + (βτ,n − βu,n)
2 σ

2
uσ

2
τ

σ2
m

. Note that

(X TX )−1 =


xT
2x2 −xT

1x2

−xT
1x2 xT

1x1

 ·
1

xT
1x1x

T
2x2 −

(
xT
1x2

) 2
=


∑
r 2m −∑

rm

−∑
rm T

 ·
1

T · ∑ r 2m − (
∑
rm)

2

var [α̂n ] =

∑
r 2m

T · ∑ r 2m − (
∑
rm)

2

(
σ2
ε + (βτ,n − βu,n)

2 σ
2
uσ

2
τ

σ2
m

)
=
T · r̄ 2m +

∑ (
r 2m − r̄m

)
T · ∑ (

r 2m − r̄m
) (

σ2
ε + (βτ,n − βu,n)

2 σ
2
uσ

2
τ

σ2
m

)
=T −1

(
r̄ 2m

(∑ (
r 2m − r̄m

)
T

) −1
+ 1

) (
σ2
ε + (βτ,n − βu,n)

2 σ
2
uσ

2
τ

σ2
m

)
Defining the consistent estimators

σ̂2
m =

∑ (
r 2m − r̄m

)
T

(54)

r̄m =

∑
rm
T

(55)

then we can rewrite the variance of the alpha estimator as

var [α̂n ] =T
−1

(
r̄ 2m
σ̂2
m
+ 1

) (
σ2
ε + (βτ,n − βu,n)

2 σ
2
uσ

2
τ

σ2
m

)
(56)

43



A.1.2 Sharper Alpha

Take Y the vector of T observations of excess returns and X = [rτ |ru], we can write the

returns as

Y = Xγ + ε (57)

γ =


βτ,n

βu,n

 (58)

.

The sample estimates for the coefficient is

γ̂ =(X TX )−1 X TY

=γ + (X TX )−1 X Tε

and has a variance of

var [γ̂] = (X TX )−1 X TE [εεT]X (X TX )−1

. Assuming the errors are uncorrelated and homoscedastic, we have

var [γ̂] = (X TX )−1 · σ2
ε
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. Note that

(X TX )−1 =


xT
2x2 −xT

1x2

−xT
1x2 xT

1x1

 ·
1

xT
1x1x

T
2x2 −

(
xT
1x2

) 2
=


r Turu −r Tτ ru

−r Tτ ru r Tτ rτ

 ·
1

r Tτ rτ · r Turu − (r Tτ ru)
2

var
[
β̂τ,n − β̂u,n

]
=

[
1 −1

]
var [γ̂]


1

−1


=
(r Turu + 2r Tτ ru + r Tτ rτ)σ

2
ε

r Tτ rτ · r Turu − (r Tτ ru)
2

=
r Tmrmσ

2
ε

r Tτ rτ · r Turu − (r Tτ ru)
2

=T −1 T −1r Tmrmσ
2
ε

T −1r Tτ rτ ·T −1r Turu − (T −1r Tτ ru)
2

=T −1 r̄ 2m + σ̂2
m(

r̄ 2τ + σ̂2
τ

)
·
(
r̄ 2u + σ̂2

u
)
−

(
r̄τ r̄u + σ̂2

τ,u
) 2σ2

ε
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A.1.3 Variance Ratio

Asymptotically, asT → ∞ the probability limits of the cross-products converge to the second

moments

σ̂2
m →σ2

m (59)

r̄m →µm (60)

σ̂2
τ →σ2

τ (61)

r̄τ →µm (62)

σ̂2
u →σ2

u (63)

σ̂2
τ,u →στ,u = 0 (64)

T var
[
β̂τ,n − β̂u,n

]
→

(
σ2
m + µ2m

) σ2
ε(

σ2
τ + µ2m

)
· σ2

u
(65)

T var
[
r̄τ
σ̂2
u

σ̂2
m

(
β̂τ,n − β̂u,n

) ]
→ µ2m

σ2
τ + µ2m

· σ
2
u

σ2
m
· σ

2
m + µ2m
σ2
m

· σ2
ε (66)

T var [α̂n ] →
(
σ2
m + µ2m

) (
(βτ,n − βu,n)

2 σ
2
τ

σ2
m

σ2
u

σ2
m
+

σ2
ε

σ2
m

)
(67)

=
σ2
u

σ2
m

σ2
m + µ2m
σ2
m

(βτ,n − βu,n)
2 σ2

τ (68)

+
σ2
τ + µ2m
µ2m

σ2
m

σ2
u
·T var

[
µm

σ2
u

σ2
m

(
β̂τ,n − β̂u,n

) ]
(69)

var [α̂n ]

var
[
r̄τ

σ̂2
u

σ̂2
m

(
β̂τ,n − β̂u,n

) ] →
(
(βτ,n − βu,n)

2 σ
2
τ

σ2
ε

+
σ2
m

σ2
u

)
σ2
τ + µ2m
µ2m

(70)

=

( (
α2
n

σ2
ε

σ2
m

µ2m
+ 1

)
·
σ2
τ

σ2
u
+ 1

)
·
(
σ2
τ

µ2m
+ 1

)
> 1 (71)

Asymptotically, the alpha has higher variance than the beta-basedmeasure ofmispricing.

In addition, the asymptotic variance ratio is greater for stocks that have larger mispricing

errors, and increases with α2
n . Intuitively, stocks with equal parts smart and dumb beta

consists of market risk rm and purely idiosyncratic shocks ε. No additional information is

gained from having the smart and dumb factors.
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A.2 Sharper Alpha with Measurement Error

TakeY the vector ofT observations of excess returns and X̃ = [r̃τ |r̃u]where

r̃τ =rτ + ξ (72)

r̃u =rm − r̃τ (73)

=ru − ξ (74)

and ξ is the measurement error in the estimated tangency factor r̃τ . We can write the returns

as

Y = X̃ γ̃ + u (75)

γ̃ =


β̃τ,n

β̃u,n

 (76)

.

The sample estimates for the coefficient is

γ̂ =
(
X̃ TX̃

) −1
X̃ TY .

Consider a case where the estimated tangency factor earns the same risk premium as the

market, and is uncorrelated with the estimated unpriced factor ru. With this additional re-
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striction on estimation noise, we have

0 =στ,ξ (77)

0 =στ,u − στ,ξ + σu,ξ − σ2
ξ (78)

σu,ξ =σ2
ξ (79)

T −1r̃ Tτ r̃τ →µ2m + σ2
τ + σ2

ξ (80)

T −1r̃ Tur̃u →var [r̃u] = σ2
u − σ2

ξ (81)

T −1r̃ Tτ r̃u →0 (82)

.

The estimated difference in betas converges to

[
1 −1

]
γ̂ →

(
1 −

σ2
ξ

µ2m + σ2
τ + σ2

ξ

)
· (βτ,n − βu,n) +

σ2
ξ

µ2m + σ2
τ + σ2

ξ

·
σξ,εn

σ2
ξ

· σ2
m

var [r̃u]
(83)

α̂∗
n →

(
1 −

σ2
ξ

µ2m + σ2
τ + σ2

ξ

) (
1 −

σ2
ξ

σ2
u

)
· αn +

σ2
ξ

µ2m + σ2
τ + σ2

ξ

·
σξ,εn

σ2
ξ

· µm (84)

where σ2
ξ is the amount of measurement error in the estimated r̃τ = rτ + ξ and σξ,εn is the

covariance between the measurement error ξ and the stock residuals ε.

If the stock residuals are uncorrelatedwith themeasurement error, we get an attenuation

bias that shrinks all sharper alphas towards zero. We then get

α̂∗
n −−−−→

T→∞
(1 − π1) (1 − π2) · αn + π1 · βξ,n · µm (85)

where

π1 =
E

[
ξ2

]
E

[
r̂ 2τ

] =
σ2
ξ

µ2m + σ2
τ + σ2

ξ

∈ [0, 1] (86)
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is the amount of noise in the estimated tangency factor,

π2 =
E

[
ξ2

]
E

[
r 2u

] =
σ2
ξ

σ2
u
∈ [0, 1]

is the amount of noise relative to the unpriced factor, and βξ,n =
cov[ξ,εn ]

σ2
ξ

is each stock’s

direct loading on the measurement error.

The attenuation bias, as a function ofmeasurement errorσξ, is plotted in FigureA.1 using

the sample moments for µ2m, σ
2
τ , and σ2

u, calculated with daily returns from 1967 to 2019.

A.3 GRS Joint test

To jointly test that N assets all have zero alpha, we can stack their returns into an N vector

rt . With the beta decomposition, we have

rt = βτ · rτ + βu · ru + ut (87)

Setting the GMM conditions to

b =


βτ

βu

 (88)

gT (b) =E


r − βτ · rτ − βu · ru

(r − βτ · rτ − βu · ru) · ft

 (89)

=


E [ut ]

E [ut · ft ]

 = 0 (90)

d =
∂

∂bT
gT (b) (91)

= −


E
[
r 2τ,t

]
E [ru,t rτ,t ]

E [ru,t rτ,t ] E
[
r 2u,t

]  ⊗ IN (92)
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and assuming no serial correlation, the weighing matrix is

S =E

rτ,tutu

T
t rτ,t ru,tutu

T
t rτ,t

rτ,tutu
T
t ru,t ru,tutu

T
t ru,t


which further simplifies assuming independence between the error and the factor

S =


E

[
r 2τ,t

]
E [ru,t rτ,t ]

E [ru,t rτ,t ] E
[
r 2u,t

]  ⊗ E [utu
T
t ] . (93)

The variance of the GMM estimator is

var [b] =
1

T
d−1Sd−1 (94)

and simplifies to

var [b] =
1

T

1(
µ2τ + σ2

τ

)
σ2
u


σ2
u 0

0 µ2τ + σ2
τ

 ⊗ E [utu
T
t ] . (95)

The sharper alpha has a variance of

var
[
βτ− βu

]
=
1

T

µ2τ + σ2
τ + σ2

u(
µ2τ + σ2

τ

)
σ2
u
E [utu

T
t ] (96)

=
1

T

µ2m + σ2
m(

µ2τ + σ2
τ

)
σ2
u
E [utu

T
t ] (97)

=
1

T

1

µ2τ + σ2
τ

· σ
2
m

σ2
u
·
(
1 +

µ2m
σ2
m

)
E [utu

T
t ] (98)
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The joint test statistic is then

Js =
[
β̂τ− β̂u

] T

var
[
β̂τ− β̂u

] −1 [
β̂τ− β̂u

]
(99)

=T ·
(
1 +

r̄ 2m
σ̂2
m

) −1
·
(
1 +

r̄ 2τ
σ̂2
τ

)
·
σ̂2
τ σ̂

2
u

σ̂2
m

·
[
β̂τ− β̂u

] T

var [û ]−1
[
β̂τ− β̂u

]
(100)

Js
a→χ2

N (101)

with the finite sample analogue under normality being

Fs =
T − K − N

N

Js
T − K − 1

Fs
d∼FN ,T −N−K .
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Figure A.1: Attenuation from measurement error. This figure illustrates the attenuation bias
from Proposition (7). As measurement error increases, sharper alphas shrink towards zero.
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B Anomaly-Sorted Portfolio Alphas

The tables in this section report alphas and their t-statistics for 10 portfolios sorted beta

(beta_1), boot-to-market (bm), earnings-to-price (ep), investment-to-asset (ia), size (me),

momentum (r11_1) and return on equity (row_1), estimated fromdaily returns between 1967

to 2018.

Daily portfolio returns were retrieved from the Hou-Xue-Zhang q-factors data library at

global-q.org.
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capm α %

rank
1 2 3 4 5 6 7 8 9 10

beta_1 2.30 2.38 1.52 2.31 1.18 0.83 0.31 −0.81 −2.30 −4.66
(2.25) (2.36) (1.52) (2.43) (1.31) (0.93) (0.34) (−0.80) (−1.99) (−2.76)

bm −1.51 0.17 1.48 0.64 1.21 1.68 2.45 2.42 2.83 4.29
(−1.82) (0.24) (1.90) (0.77) (1.31) (1.82) (2.52) (2.44) (2.63) (3.12)

ep −1.90 −0.64 0.59 1.95 0.30 1.80 3.51 3.18 3.25 3.40
(−1.79) (−0.78) (0.68) (2.32) (0.36) (1.94) (3.95) (3.01) (2.91) (2.72)

ia 1.94 2.75 2.74 1.53 1.30 1.14 1.24 0.32 0.03 −3.69
(1.84) (2.81) (3.13) (1.83) (1.65) (1.39) (1.50) (0.40) (0.03) (−3.39)

me 0.66 0.58 0.87 1.16 1.15 0.60 1.38 0.96 0.78 −0.16
(0.48) (0.41) (0.68) (0.98) (1.08) (0.66) (1.65) (1.33) (1.33) (−0.31)

r11_1 −10.02 −2.10 −0.80 0.11 −0.02 0.47 0.52 1.94 2.62 5.49
(−5.22) (−1.52) (−0.71) (0.11) (−0.03) (0.56) (0.61) (2.20) (2.59) (3.65)

roe_1 −7.60 −2.58 −1.52 −0.32 1.15 −0.36 1.14 0.80 0.60 2.64
(−5.06) (−2.33) (−1.51) (−0.36) (1.39) (−0.43) (1.47) (1.05) (0.78) (2.96)

capm α∗ %

rank
1 2 3 4 5 6 7 8 9 10

beta_1 1.49 0.63 0.60 0.97 0.66 0.29 0.36 −0.24 −1.26 −3.41
(12.05) (5.12) (4.91) (8.47) (6.07) (2.74) (3.24) (−1.96) (−9.00) (−16.81)

bm −2.21 −0.89 −0.03 0.14 0.31 0.66 0.97 1.61 2.09 2.59
(−22.37) (−10.56) (−0.36) (1.42) (2.75) (5.86) (8.24) (13.46) (16.16) (15.65)

ep −2.65 −0.36 −0.38 0.04 0.36 0.68 1.43 1.15 1.33 1.61
(−20.90) (−3.58) (−3.60) (0.43) (3.49) (6.03) (13.39) (8.97) (9.82) (10.64)

ia 1.66 1.34 1.23 0.84 1.05 0.56 0.30 −0.47 −2.00 −3.25
(13.00) (11.38) (11.62) (8.31) (11.08) (5.69) (2.99) (−4.83) (−16.60) (−25.19)

me 0.30 1.53 1.50 1.28 1.25 0.55 −0.10 −0.09 0.07 −1.09
(1.78) (9.00) (9.64) (8.95) (9.64) (5.01) (−0.98) (−1.02) (0.95) (−17.19)

r11_1 −7.13 −2.20 −0.64 −0.77 −0.64 −0.13 0.22 0.74 1.41 2.43
(−31.73) (−13.25) (−4.70) (−6.67) (−5.80) (−1.31) (2.11) (6.91) (11.54) (13.40)

roe_1 −5.27 −2.12 −1.55 −0.68 −0.11 −0.32 0.02 0.05 0.09 0.39
(−29.89) (−15.92) (−12.86) (−6.25) (−1.09) (−3.05) (0.22) (0.56) (0.91) (3.63)
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ff3 α %

rank
1 2 3 4 5 6 7 8 9 10

beta_1 1.59 2.23 1.42 2.04 0.89 0.49 −0.15 −1.18 −2.32 −4.02
(1.60) (2.30) (1.46) (2.17) (0.99) (0.56) (−0.16) (−1.17) (−2.16) (−2.68)

bm 1.04 1.30 1.90 0.43 0.49 0.61 1.01 0.42 0.37 1.10
(1.75) (2.02) (2.46) (0.52) (0.54) (0.69) (1.10) (0.48) (0.40) (0.95)

ep 0.26 0.49 1.41 2.37 0.41 1.18 3.03 1.94 1.58 1.12
(0.28) (0.63) (1.65) (2.84) (0.49) (1.30) (3.46) (1.91) (1.51) (0.99)

ia 1.18 1.65 2.27 1.31 0.98 1.39 1.40 1.40 1.89 −1.77
(1.16) (1.74) (2.66) (1.57) (1.26) (1.73) (1.74) (1.84) (2.10) (−1.89)

me −1.10 −1.46 −0.71 −0.11 0.11 −0.06 0.94 0.70 0.74 1.10
(−1.41) (−2.66) (−1.52) (−0.23) (0.22) (−0.11) (1.45) (1.12) (1.30) (3.32)

r11_1 −11.49 −3.16 −1.73 −0.46 −0.45 0.27 0.34 2.10 3.14 7.32
(−6.28) (−2.33) (−1.57) (−0.49) (−0.50) (0.33) (0.40) (2.38) (3.13) (5.41)

roe_1 −7.58 −3.62 −2.31 −0.79 0.82 −0.22 1.35 1.65 2.05 4.28
(−5.70) (−3.48) (−2.35) (−0.89) (0.99) (−0.26) (1.74) (2.25) (2.97) (5.29)

ff3 α∗ %

rank
1 2 3 4 5 6 7 8 9 10

beta_1 0.79 0.57 0.59 0.73 0.37 −0.08 −0.17 −0.71 −1.46 −3.04
(6.88) (5.10) (5.25) (6.78) (3.54) (−0.76) (−1.61) (−6.16) (−11.91) (−17.83)

bm 0.57 0.35 0.43 −0.09 −0.49 −0.53 −0.60 −0.56 −0.59 −0.96
(8.35) (4.67) (4.83) (−0.99) (−4.61) (−5.20) (−5.73) (−5.54) (−5.53) (−7.17)

ep −0.37 0.87 0.53 0.53 0.53 0.04 0.96 −0.18 −0.47 −0.91
(−3.51) (9.76) (5.37) (5.57) (5.49) (0.43) (9.57) (−1.51) (−3.91) (−6.96)

ia 0.74 0.13 0.78 0.64 0.76 0.90 0.55 0.73 −0.03 −1.29
(6.34) (1.22) (7.95) (6.66) (8.56) (9.78) (5.88) (8.28) (−0.33) (−12.06)

me −2.06 −1.16 −0.67 −0.50 −0.24 −0.43 −0.79 −0.51 −0.03 0.41
(−23.36) (−18.61) (−12.48) (−9.43) (−4.14) (−6.23) (−10.72) (−7.04) (−0.52) (10.70)

r11_1 −9.02 −3.44 −1.66 −1.37 −1.07 −0.33 0.06 0.94 1.96 4.28
(−46.19) (−22.51) (−13.22) (−12.75) (−10.36) (−3.41) (0.61) (9.33) (17.20) (28.33)

roe_1 −5.57 −3.41 −2.49 −1.23 −0.49 −0.16 0.25 1.02 1.72 2.23
(−38.41) (−29.34) (−22.52) (−12.08) (−5.15) (−1.63) (2.78) (12.17) (21.93) (24.48)
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q-factor α %

rank
1 2 3 4 5 6 7 8 9 10

beta_1 −0.52 −0.73 −1.42 −0.78 −0.83 −0.34 −0.20 −0.11 0.11 1.75
(−0.54) (−0.80) (−1.54) (−0.87) (−0.94) (−0.38) (−0.22) (−0.11) (0.10) (1.22)

bm −0.15 −0.15 0.19 −0.28 −0.27 1.08 1.79 1.00 1.76 4.11
(−0.21) (−0.22) (0.25) (−0.34) (−0.30) (1.23) (1.95) (1.09) (1.80) (3.45)

ep 1.64 −1.70 −1.15 0.44 −1.25 −0.03 1.27 1.29 1.93 2.72
(1.71) (−2.12) (−1.36) (0.54) (−1.53) (−0.03) (1.48) (1.26) (1.76) (2.22)

ia −0.56 0.29 −0.64 0.01 −0.28 −0.55 −0.50 1.37 3.33 0.44
(−0.60) (0.36) (−0.89) (0.01) (−0.37) (−0.70) (−0.64) (1.82) (3.98) (0.49)

me 0.05 −0.73 −0.11 0.67 0.98 0.87 2.08 1.77 1.21 0.21
(0.06) (−1.19) (−0.21) (1.28) (1.79) (1.37) (3.16) (2.81) (2.10) (0.64)

r11_1 −1.65 2.06 1.02 0.48 −0.55 −0.57 −1.89 −0.77 −0.42 4.45
(−1.02) (1.59) (0.94) (0.51) (−0.61) (−0.69) (−2.31) (−0.92) (−0.43) (3.19)

roe_1 0.76 2.34 2.89 1.16 1.56 0.36 1.05 −0.51 −0.45 −0.10
(0.71) (2.77) (3.62) (1.35) (1.93) (0.42) (1.35) (−0.71) (−0.67) (−0.14)

q-factor α∗ %

rank
1 2 3 4 5 6 7 8 9 10

beta_1 −0.41 −1.20 −1.08 −0.98 −0.65 −0.50 −0.11 0.05 0.05 0.44
(−4.86) (−15.16) (−13.48) (−12.60) (−8.41) (−6.51) (−1.42) (0.59) (0.58) (3.45)

bm −0.69 −0.83 −0.78 −0.52 −0.81 −0.03 0.19 0.25 0.80 1.51
(−11.34) (−13.95) (−11.63) (−7.16) (−10.25) (−0.45) (2.33) (3.16) (9.40) (14.53)

ep 0.05 −0.84 −1.28 −0.80 −0.53 −0.56 −0.12 −0.26 0.20 0.67
(0.58) (−12.06) (−17.35) (−11.07) (−7.34) (−7.11) (−1.57) (−2.95) (2.06) (6.28)

ia −0.54 −0.65 −1.04 −0.22 −0.004 −0.41 −0.64 0.49 0.56 −0.20
(−6.63) (−8.97) (−16.75) (−3.14) (−0.06) (−5.91) (−9.31) (7.50) (7.62) (−2.55)

me −1.40 −0.90 −0.58 −0.33 −0.01 −0.06 −0.22 0.04 0.18 −0.26
(−19.90) (−16.92) (−12.39) (−7.18) (−0.11) (−1.01) (−3.81) (0.80) (3.62) (−8.77)

r11_1 −1.78 0.36 0.46 −0.46 −0.85 −0.74 −1.26 −0.96 −0.62 1.39
(−12.59) (3.22) (4.81) (−5.55) (−10.79) (−10.26) (−17.77) (−13.09) (−7.29) (11.38)

roe_1 −0.16 0.70 1.07 0.16 0.04 0.20 −0.01 −0.54 −0.24 −0.98
(−1.71) (9.42) (15.41) (2.10) (0.55) (2.66) (−0.08) (−8.58) (−4.03) (−15.10)
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ff5 α %

rank
1 2 3 4 5 6 7 8 9 10

beta_1 −0.74 −1.13 −2.01 −1.30 −1.60 −1.28 −1.43 −1.87 −1.16 0.47
(−0.79) (−1.32) (−2.35) (−1.57) (−1.93) (−1.51) (−1.59) (−1.88) (−1.09) (0.34)

bm 1.26 0.41 0.39 −1.02 −1.24 −0.11 0.07 −1.03 −0.70 0.36
(2.17) (0.65) (0.52) (−1.26) (−1.41) (−0.13) (0.08) (−1.20) (−0.78) (0.32)

ep 2.43 −0.79 −0.68 0.51 −1.44 −0.84 0.83 −0.50 −0.47 −0.17
(2.79) (−1.04) (−0.84) (0.64) (−1.80) (−0.97) (1.00) (−0.52) (−0.46) (−0.15)

ia −0.53 −0.54 −0.82 −0.26 −0.61 −0.54 −0.72 1.44 3.92 0.57
(−0.61) (−0.67) (−1.22) (−0.33) (−0.82) (−0.70) (−0.95) (1.93) (4.80) (0.67)

me −0.78 −1.53 −0.62 0.20 0.74 0.48 1.77 1.43 1.01 0.46
(−1.00) (−2.83) (−1.33) (0.43) (1.51) (0.80) (2.80) (2.35) (1.79) (1.44)

r11_1 −8.45 −2.45 −2.14 −1.75 −2.30 −1.17 −2.05 −0.08 1.13 8.28
(−4.73) (−1.82) (−1.96) (−1.89) (−2.65) (−1.45) (−2.60) (−0.10) (1.17) (6.14)

roe_1 −2.82 −1.94 −1.04 −0.14 0.71 −0.14 0.70 0.54 1.10 1.97
(−2.48) (−1.94) (−1.10) (−0.16) (0.89) (−0.17) (0.90) (0.75) (1.64) (2.68)

ff5 α∗ %

rank
1 2 3 4 5 6 7 8 9 10

beta_1 −0.50 −1.28 −1.35 −1.17 −1.07 −1.09 −0.89 −1.12 −0.79 −0.42
(−5.12) (−14.50) (−15.30) (−13.74) (−12.49) (−12.38) (−9.61) (−10.90) (−7.14) (−2.94)

bm 0.60 −0.15 −0.40 −0.87 −1.37 −0.85 −1.03 −1.30 −1.10 −1.26
(10.04) (−2.29) (−5.23) (−10.39) (−15.13) (−9.40) (−11.14) (−14.70) (−11.77) (−10.60)

ep 0.82 0.13 −0.65 −0.50 −0.51 −1.07 −0.29 −1.53 −1.63 −1.70
(9.11) (1.59) (−7.72) (−6.01) (−6.14) (−11.86) (−3.34) (−15.42) (−15.62) (−14.92)

ia −0.04 −0.92 −0.83 −0.17 −0.12 −0.19 −0.67 0.65 0.97 −0.04
(−0.44) (−10.98) (−11.90) (−2.07) (−1.51) (−2.41) (−8.59) (8.35) (11.49) (−0.44)

me −1.74 −1.10 −0.55 −0.28 0.15 −0.08 −0.26 −0.03 0.16 0.04
(−22.09) (−19.95) (−11.56) (−5.96) (2.89) (−1.32) (−3.99) (−0.48) (2.69) (1.18)

r11_1 −7.00 −2.96 −1.86 −2.06 −2.06 −1.11 −1.24 −0.28 0.79 4.66
(−40.01) (−21.47) (−16.58) (−21.75) (−23.33) (−13.26) (−15.30) (−3.27) (7.89) (34.69)

roe_1 −2.57 −2.23 −1.60 −0.72 −0.44 −0.06 −0.10 0.35 1.06 0.79
(−22.15) (−21.97) (−16.41) (−8.10) (−5.34) (−0.68) (−1.27) (4.69) (15.38) (10.32)
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